Retinal vessel detection via second derivative of local Radon transform

نویسندگان

  • Michael Krause
  • Ralph M. Alles
  • Bernhard Burgeth
  • Joachim Weickert
چکیده

For the automatic detection of retinal blood vessels a preprocessing of the noisy original images is necessary. Retinal blood vessels are assumed to be line-like structures and can therefore be enhanced via convolution with suitable, elongated kernels. Consequently we use the local Radon kernel as a prototype of an elongated kernel for this task. The Radon kernel is rotated at different angles and adapts via a maximisation procedure to the directions of the vessels. The proposed algorithm is easy to implement and combined with edgeand coherence-enhancing anisotropic diffusion as a preprocessing step it offers higher robustness than the Laplacian of Gaussian or Haralick operator. Furthermore, our algorithm detects vessels as connected structures with very few interruptions. The performance is evaluated in experiments on the publicly available databases DRIVE and STARE as well as on selected examples of our clinical database. Since our algorithm does not depend on a priori directional and branching models, in its generality it is capable to detect other vessel structures in the human eye such as the conjunctiva vessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable a...

متن کامل

Early Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods

Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...

متن کامل

Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method

Introduction: Diabetic retinopathy (DR) is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA...

متن کامل

A Radon Transform Based Approach for Extraction of Blood Vessels in Conjunctival Images

This paper proposes a local Radon transform-based algorithm for extraction of blood vessels in conjunctival images. This algorithm divides the image into overlapping windows and applies Radon transform to each window. Vessel direction in each window is found by detection of peak in Radon space. The proposed algorithm is capable of extracting blood vessels with a variety of widths. According to ...

متن کامل

A Motion Detection Algorithm Using Local Phase Information

Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009